
Magnetoelectric coupling in the multiferroic compound LiCu2O2

Chen Fang,1,* Trinanjan Datta,2,† and Jiangping Hu1,‡

1Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
2Department of Chemistry and Physics, Augusta State University, Augusta, Georgia 30904, USA

�Received 30 April 2008; revised manuscript received 21 November 2008; published 14 January 2009�

We investigate the possible types of coupling between ferroelectricity and magnetism for the zigzag spin
chain multiferroic compound LiCu2O2. We construct a multi-order-parameter phenomenological model for the
material based on a group theoretical analysis. We find that a theory involving interchain magnetoelectric
coupling belonging to the same unit cell explains the experimental results of Park et al. �Phys. Rev. Lett. 98,
057601 �2007��. Our proposed model is able to relate the flop of the spin-spiral plane with the direction of the
electric polarization. From our calculations we conclude that the zero-field structure observed by Seki et al.
�Phys. Rev. Lett. 100, 127201 �2004�� is the correct one. Furthermore, based on our theoretical model we make
specific selection rule predictions about electromagnon excitations present in the LiCu2O2 system. We predict
that the electromagnon peaks measured in an ac-conductivity measurement are field dependent.
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I. INTRODUCTION

Cross coupling of magnetism and ferroelectricity in ma-
terial systems is an intriguing phenomenon. Presently there
are chemical compounds in which both magnetism and fer-
roelectricity can exist simultaneously. These systems are
called multiferroics.1–7 The mixed valent zigzag spin chain
cuprate compound LiCu2O2 was shown to be a multiferroic
material by Park et al.8 The experimental data on the com-
pound exhibit a � /2 flop of the spin-spiral plane for a mag-
netic field applied along the crystallographic b axis.

In this paper we introduce a theoretical model involving
an interchain magnetoelectric coupling to provide an expla-
nation for the experimental data on LiCu2O2.8–11 For
LiCu2O2, there are two chains in each unit cell. Therefore,
there are two types of “interchain” interactions. The first one
is the interchain coupling between two chains in two differ-
ent unit cells. The second one is the interchain coupling be-
tween two chains in the same unit cell. While the first one is
self-evident due to the observation of magnetic order, the
second one is not. The second type of interchain coupling
plays an important role in LiCu2O2 based on the analysis
given in our paper. We show that a different set of magneto-
electric couplings can be generated by the second type of
interchain couplings.

We perform a group theoretical calculation12–15 for the
LiCu2O2 magnetic structure. Based on that analysis we con-
struct a phenomenological multi-order-parameter magnetiza-
tion model �see Sec. IV�. There have also been other theo-
retical efforts to explain the experimental data.16,17 The
multi-order-parameter model is able to account for the elec-
tric polarization flip through � /2 and relate the flop of the
spin-spiral plane with the direction of the electric polariza-
tion �see Sec. V�. The theory does not include any aniso-
tropic terms. Besides accounting for the observed experi-
mental features �polarization flip and spin-spiral plane flop�,
we also discuss the consequences of twinning of the crystal
structure for our theory, and derive a selection rule associated
with the low energy hybrid excitations of phonon and mag-
non, termed as electromagnons.

We demonstrate through our calculations that one of the
experimental facts, electric polarization along the a axis,

should be ascribed to interchain interactions generated
as a result of considering the details of the magnetic unit cell.
We show that not all the magnetoelectric interaction terms
have the usual phenomenological form.18 Specifically, the
interchain coupling term cannot be expressed as a

P� · ��M� ·�� �M� − ��� ·M� �M� � term in the continuum limit. A hid-
den assumption behind the continuum coupling model is that
the magnetic order is described by a single order parameter.
When the lattice structure is complicated this assumption is
not valid and the general form of the magnetoelectric cou-
pling can be different.

This paper is arranged as follows. In Sec. II we describe
the crystal and the magnetic structure of LiCu2O2. In Sec. III
we elucidate the magnetic symmetry operations of the lattice,
and use group theoretical arguments to construct the possible
intrachain and interchain couplings. In Sec. IV we derive the
phenomenological magnetization model. In Sec. V we ana-
lyze the model derived in Sec. IV to provide an explanation
for the experimental data of Park et al.8 In Sec. VI we derive
the consequences of the various spin structures and electric
polarization within our model. In Sec. VII we discuss the
experimental consequences of twinning. In Sec. VIII we de-
rive the selection rule for electromagnons. Finally, in Sec. IX
we provide a summary and the main conclusions of our pa-
per.

II. LiCu2O2 SYSTEM

The mixed valent cuprate compound LiCu2O2 is a ferro-
electric material. It crystallizes in an orthorhombic structure
with the space group Pnma �No. 62�.19–21 The crystal struc-
ture of the compound can be visualized as follows. Consider
two linear Cu2+ chains propagating along the crystallo-
graphic b axis. The two chains are displaced b /2 with respect
to each other and they form a zigzag triangular ladderlike
structure as shown in Fig. 1. The ladders are separated from
each other by the nonmagnetic Li+ ions and by the layers of
nonmagnetic Cu+ ions. The letters a, b, and c represent the
lattice constants of the simple orthorhombic crystal structure.

The magnetic behavior of the system is provided by the
Cu2+ ions which carry a spin 1/2. The magnetic structure of
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LiCu2O2 has been determined from the neutron-scattering
experiments.9,10 While the neutron-diffraction experiments of
Masuda et al.10 concluded that the rotating spins lie in the ab
plane, Seki et al.9 indicated that the spins lie in the bc plane.
There is also independent NMR study which observes an
out-of-plane component.11 The magnetic modulation vector

obtained from the experiments is Q� = �0.52�
a , 2��

b ,0�, where
�=0.174 is the spiral modulation along the chain direction.
Along the a axis there is an antiferromagnetic order and
along the b axis there is a spiral order. Successive spins on
each rung are almost parallel to each other with each spin
being rotated relative to each other by an angle �=2��.
Within each double chain any nearest-neighbor spin from the
opposite legs are almost antiparallel and form an angle � /2
=��.

III. SYMMETRY OPERATIONS OF THE LATTICE AND
MAGNETIC STRUCTURE

The goal of this section is to find a physically appropriate
form for the magnetoelectric coupling in LiCu2O2 subject to
the symmetry constraints of the magnetic structure. Such a
term should conserve translational, space inversion �if it is
also an element of the space group, which is the case for
LiCu2O2�, and time-reversal symmetries. Phenomenological
models18 for multiferroics are based on these considerations
only. These models assume that a single unit cell of the lat-
tice is a point in the system without any structure. An appro-
priate realistic model in these cases should include all the
inequivalent atoms �considering both the type and the loca-

tion of the ion in space� in a single magnetic unit cell. This
allows for the possibility to include more degrees of free-
dom. For example, in the LiCu2O2 case there are four spa-
tially inequivalent magnetic ions in the magnetic unit cell

that we should consider. They are denoted as S�1, S�2, S�3, and

S�4 �see Fig. 1�.
As the number of possible forms of the magnetoelectric

coupling increases rapidly with the degrees of freedom, such
a detailed model seems too complicated to be useful. How-
ever there are symmetry constraints which help in simplify-
ing the situation. These constraints should be obeyed by all
the terms in the Hamiltonian. The terms should be invariant
under the lattice symmetry operations and time-reversal sym-
metry. The lowest-order magnetoelectric coupling which pre-
serves time-reversal symmetry is a trilinear term.12–15 It is
linear in the electric polarization and bilinear in the magnetic
order parameters. To simplify the discussion, we consider the
coupling terms that involve the uniform spontaneous electric

polarization P� and not those that include the modulations of
the polarization. The general magnetoelectric Hamiltonian
HME is then

HME = �
�

��P� �
ij;��

�
R� R��

Cij;����R� − R� ��Si
��R� �Sj

��R� �� , �1�

where �� is the magnetoelectric coupling, Cij;��� is a general
coefficient in the Hamiltonian, � ,� ,�=a ,b ,c are the indices
for the crystallographic axes, i , j=1,2 ,3 ,4 are the indices
for the four spatially inequivalent magnetic ions in the mag-

netic unit cell �see Fig. 1�, and R� denotes the position in the
unit cell. Also, the � spin component for the ith magnetic

atom at a position R� in the magnetic unit cell is represented

by Sj
��R� �. The Fourier-transformed version of the Hamil-

tonian is

HME = �
�

��P� �
ij;��

�Cij;����Q� �Si
��Q� �Sj

��− Q� � + c.c.� , �2�

where Cij;����Q� � is the Fourier transform of Cij;����R� −R� ��
and Si

��Q� � is the Fourier transform of the spin components.
The above equation was obtained by substituting the Fourier-

transformed version of the magnetic structure Si
��R� �

=Si
��Q� �exp�iQ� ·R� �+c.c. into Eq. �1�.
Not every term in the above magnetoelectric coupling

conserves all the symmetries. Only certain linear combina-
tions do. Specifically we are interested in the lattice symme-
try operations that conserve the magnetic structure with the

magnetic propagation vector Q� . From group representation
theory we know that these operations constitute a subgroup
of the full symmetry group of the lattice for which we have
one �and only one� two-dimensional �2D� representation, E,
2b, mc, and mc2b all being two-by-two matrices.

The lattice symmetry operations which preserve the mag-

netic propagation vector Q� are listed in Table I. The two-
dimensional representations of the symmetry operations are
given by

FIG. 1. �Color online� LiCu2O2 crystal structure: the multifer-
roic LiCu2O2 compound has pairs of Cu2+-ion chains running par-
allel to each other along the b axis. Each chain is separated from the
other by b /2 and forms the zigzag triangular ladder structure shown
in the figure. The bold line indicates the bond between the spin-1/2
magnetic Cu2+ ions �represented by the green dots� forming the
zigzag chain. These ladders are separated from each other by the
nonmagnetic Li+ ions �represented by the blue dots� and by the
layers of nonmagnetic Cu+ ions �represented by the orange dots�. In
LiCu2O2 there are four spatially inequivalent magnetic ions in the
magnetic unit cell that we consider in our theoretical formulation

�see Secs. III and IV�. They are denoted as S�1, S�2, S�3, and S�4 in the
figure above.
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E = �1 0

0 1
� ;2b = �− e−iqb/2 0

0 e−iqb/2 � , �3�

mc = �0 − 1

1 0
� ;mc2b = � 0 − e−iqb/2

− e−iqb/2 0
� . �4�

For the above representation we can find groups of symmetry
adapted variables which are transformed according to the
representation under the symmetry operations. A symmetry
adapted variable is a column vector �two dimensional in this
case� whose elements are a linear combination of the original

magnetic variables—Si
��Q� �’s. The variables transform under

any operation of the subgroup in the same way they trans-

form if left multiplied by the corresponding matrix for the
same operation. These variables can be computed for the
LiCu2O2 case after deducing the transformation tables �see
Tables II and III� for all the members of the symmetry sub-
group. The symmetry operation table for mc2b can be ob-
tained by combining Tables II and III.

We find six groups of symmetry adapted variables, that is,
twelve elements in total. The number of symmetry adapted
vectors can also be deduced if we notice the fact that all the
elements should make a different basis for the magnetic
structure. This requires a total number of twelve elements,
the same as the original number of Si

�’s. The total number of
vectors will be six. We sort them into two sets as listed
below. The groups of symmetry adapted variables, S�1� and
S�2�, are then

S�1� = ��S1a + e−iqb/2S3a

S2a − e−iqb/2S4a
�,�S1b − e−iqb/2S3b

S2b + e−iqb/2S4b
�,�S2c + e−iqb/2S4c

S1c − e−iqb/2S3c
�	 , �5�

S�2� = �� S2a + e−iqb/2S4a

− S1a + e−iqb/2S4a
�,� S2b − e−iqb/2S4b

− S1b − e−iqb/2S3b
�,� S1c + e−iqb/2S3c

− S2c + e−iqb/2S4c
�	 . �6�

Using the properties of the symmetry adapted variables, we
then have

S�
�i�†Mij;��S�

�j�
⇀

2b

S�
�i�†�m2b

�†Mij;��m2b
S�

�j�

= S�
�i�†�	zMij;��	z�S�

�j�, �7�

S�
�i�†Mij;��S�

�j�
⇀

mc

S�
�i�†�mmc

�†Mij;��mmc
S�

�j�

= S�
�i�†�	yMij;��	y�S�

�j�. �8�

Hereafter we suppress the argument of S. We will consider S
to be S�Q� � and S† to be S�−Q� �. Having found the symmetry
adapted variables, we recast the magnetoelectric Hamiltonian
in the following form:

HME = �
�

��P� �
i,j;�,�

S�
�i�†Mij;��S�

�j� + c.c., �9�

where the indices i , j=1,2 are for the symmetry adapted
variables and Mij;�� is an arbitrary two-by-two coupling ma-
trix. We apply the stated constraints to find all the possible
forms of the magnetoelectric coupling:

�1� Time-reversal symmetry. The expression above with its
trilinearity automatically includes time-reversal symmetry.

TABLE I. Lattice symmetry operations which preserve the mag-

netic propagation vector Q� . The identity operation is represented by
E. A twofold rotation about the crystallographic b axis is repre-
sented by 2b. A reflection about the c axis is denoted by mc, and
finally a combination of the rotation and reflection is denoted by
mc2b.

Er�= �x ,y ,z�
2br�= �x̄ ,y+1 /2, z̄�
mcr�= �x−1 /2,y , z̄−1 /2�
mc2br�= �x̄−1 /2,y+1 /2,z−1 /2�

TABLE II. Symmetry operation: 2b, twofold rotation about the
crystallographic b axis. In LiCu2O2 there are four spatially in-
equivalent magnetic ions in the magnetic unit cell. They are denoted

as S�1, S�2, S�3, and S�4 �see Fig. 1�. The subscripts a, b, and c denote
the components along those crystallographic axes.

S1 S2 S3 S4

S1a� =−S3ae−iqb/2 S2a� =−S4ae−iqb/2 S3a� =−S1a S4a� =−S2a

S1b� =−S3be−iqb/2 S2b� =S4be−iqb/2 S3b� =S1b S4b� =S2b

S1c� =−S3ce
−iqb/2 S2c� =−S4ce

−iqb/2 S3c� =−S1c S4c� =−S2c

TABLE III. Symmetry operation: mc, reflection about the crys-
tallographic c axis. In LiCu2O2 there are four spatially inequivalent

magnetic ions in the magnetic unit cell. They are denoted as S�1, S�2,

S�3, and S�4 �see Fig. 1�. The subscripts a, b, and c denote the com-
ponents along those crystallographic axes.

S1 S2 S3 S4

S1a� =−S2a S2a� =S1a S3a� =S4a S4a� =−S3a

S1b� =−S2b S2b� =S1b S3b� =S4b S4b� =−S3b

S1c� =S2c S2c� =−S1c S3c� =−S4c S4c� =−S3c
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�2� Lattice symmetry. We focus on the subgroup of the
lattice symmetry operations. All three components of the
electric polarization behave differently under the symmetry
operations. We discuss each case separately. In the following
we explicitly work out the case for Pc and simply list the
result for the other two components. The symmetry proper-
ties of Pc under the lattice symmetry operations are

Pc→
mc

− Pc, Pc→
2b

− Pc, and Pc→
I

− Pc. From the overall invari-
ance of the trilinear coupling, we require that Mij;�� anticom-
mute with both 	y and 	z. From this we can infer that Mij
should be proportional to 	x to preserve the invariance under
symmetry operations. A similar procedure can be applied to
find the appropriate Mij’s for Pa and Pb. The result can be
summarized as follows: for Pa, Mij 
	y; for Pb, Mij 
1; for
Pc, Mij 
	x. Later we will prove that the constant of propor-
tionality can be either real or purely imaginary based on
space inversion symmetry arguments.

�3� Inversion symmetry. Inversion operation is not a mem-
ber of the subgroup of the symmetry operations that con-

serves the magnetic propagation vector Q� . Therefore it can-
not be represented by a matrix acting on the symmetry
adapted variables. The mapping for space inversion opera-
tion is

S1
��q� → S3

��− q�, S2
��q� → S4

��− q� , �10�

S3
��q� → S1

��− q�, S4
��q� → S2

��− q� , �11�

where � denotes the spin component. With this mapping we
obtain the expression for the inversion operation in terms of
the symmetry adapted variables as

ISb
�i� = �− e−iqb/2 0

0 e−iqb/2 �Sb
�i��, �12�

IS�
�i� = �e−iqb/2 0

0 − e−iqb/2 �S�
�i��, �13�

where �=a ,c and i=1,2 are the indices for the symmetry
adapted variables. Below we explicitly work out the case for
Pc and list the result for the other two components of electric
polarization. We have

PcS�
�i�†	xS�

�j�
⇀

I

�− Pc��S�
�i�T	z	x	zS�

�j��� = Pc�S�
�i�†	xS�j���,

�14�

if �, �=a, c, or �=�=b, and

PcS�
�i�†	xS�

�j�
⇀

I

�− Pc��− S�
�i�T	z	x	zS�

�j��� = − Pc�S�
�i�†	xS�

�j���,

�15�

if either � or � is b. The electric polarization and the total
Hamiltonian must be real, making the proportionality con-
stant in the first case real and in the second case purely
imaginary. The complete result is summarized below. It
shows that there are only six forms that do not violate any of
the symmetries of the system

Pa�S�
�i�†	yS�

�j� + c.c.� , �16�

Pb�S�
�i�†S�

�j� + c.c.� , �17�

Pc�S�
�i�†	xS�

�j� + c.c.� , �18�

if �, �=a, c, or �=�=b, and

iPa�S�
�i�†	yS�

�j� − c.c.� , �19�

iPb�S�
�i�†S�

�j� − c.c.� , �20�

iPc�S�
�i�†	xS�

�j� − c.c.� , �21�

if either � or � is b.
To summarize our work up to this point, we have derived

all the possible forms of magnetoelectric coupling that are
invariant under �1� time reversal, �2� space inversion, and �3�
the lattice symmetry operations that conserve the magnetic
propagation vector by using the symmetry adapted variables.

IV. PHENOMENOLOGICAL MAGNETIZATION
MODEL

In this section we focus on simplifying the form for the
magnetoelectric coupling derived in Sec. III. We classify the
simplified magnetoelectric interactions as intrachain and in-
terchain terms. The latter is a signature of the double-chain
structure of LiCu2O2.

A. Model simplification

A simplified expression for the phenomenological model
can be obtained if we observe first that ferroelectricity coex-
ists with noncollinear magnetic structure. This suggests that
terms with �=� can be excluded. Second, the polarization
along the b axis is not observed. Therefore, the couplings
with Pb need not be considered. Third, the magnetic mo-
ments on the four Cu2+ atoms, assumed to be independent
variables in our theoretical formulation, form two zigzag
chains19–21 extended in the b direction on each of which a
spin-density wave with a propagation vector q along the b
axis exists. To be specific we have S2 and S4 on one zigzag
chain, and S1 and S3 in the adjacent unit cell on another
zigzag chain �see Fig. 1�. This observation immediately leads
to

S1� = e−iqb/2S3�, �22�

S2� = − e−iqb/2S4�. �23�

Moreover the symmetry adapted variables become

S�1� = �� 2e−iqb/2S3a

− 2e−iqb/2S4a
�,�0

0
�,�0

0
�	 , �24�

S�2� = ��0

0
�,�− 2e−iqb/2S4b

− 2e−iqb/2S3b
�,�2e−iqb/2S3c

2e−iqb/2S4c
�	 . �25�

All the magnetoelectric coupling terms can be enumerated in
terms of the symmetry adapted variables by using the above
two equations, Eqs. �24� and �25�. After the insertion of Eqs.
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�22� and �23� three of the six symmetry adapted variables
reduce to zero. We can then write them into a single two-
column three-component variable

M = �� M�1�a

− M�2�a
�,�− M�2�b

− M�1�b
�,�M�1�c

M�2�c

�	 . �26�

In the above expression we have defined M�1��=2e−iqb/2S3�

to represent the magnetization in the first chain and M�2��
=2e−iqb/2S4� to represent the magnetization in the second
chain. All the spin variables are the Fourier components of
the real-space magnetic structure and are in general complex
numbers. After these simplifications, the general magneto-
electric terms �Eqs. �16�–�21�� are reduced to intrachain in-
teraction terms

Pa�M�1�a
� M�1�b + M�1�b

� M�1�a + �1� → �2�� , �27�

Pa�M�1�c
� M�1�b + M�1�b

� M�1�c − �1� → �2�� , �28�

iPc�M�1�a
� M�1�b − M�1�b

� M�1�a − �1� → �2�� , �29�

iPc�M�1�c
� M�1�b − M�1�b

� M�1�c + �1� → �2�� , �30�

and interchain interaction terms

iPa�M�1�a
� M�2�c + M�2�a

� M�1�c − M�1�aM�2�c
� − M�2�aM�1�c

� � ,

�31�

Pc�M�1�a
� M�2�c − M�2�a

� M�1�c + M�1�aM�2�c
� − M�2�aM�1�c

� � .

�32�

We will discuss the six terms above �Eqs. �27�–�32�� in Sec.
IV B. We realize from their expressions that the first four are
intrachain terms since every term has two magnetization
components from the same chain. The last two are interchain
ones.

B. Intrachain versus interchain couplings

First we focus on the intrachain couplings. A theory that
has these terms assumes that, aside from the possible spin
exchange between spin chains, each chain is contributing to
the ferroelectricity identically and independently. Examples
of these include theories which have explained multiferroic
systems such as the 113 perovskites,22 Ni3V2O8,7 and
RbFe�MnO4�2.23 In LiCu2O2, we would like to see what pre-
dictions these intrachain terms can make and compare them
to experiments.

We adopt the magnetic structure proposed by Park et al.8

and Seki et al.,9 where there is a spin spiral whose compo-
nents lie on the bc plane, propagating in the b axis, at zero
magnetic field. Furthermore, we notice that we do not know
the relative phase between the two spin chains. To make
progress we therefore make an assumption. Let us consider
the two spin chains to be either in phase or out of phase. This
implies that M�1��= �M�2��. This is true if we adopt the spin
model proposed in Ref. 24, where the spin chains are in

phase if the interaction between the double chains J��0 and
out of phase if J�0. Using this magnetic structure one
easily obtains M�i�a=0, M�i�b=1, and M�i�c= i. Substituting
these back to the intrachain coupling terms, we find that only
the Pc term �Eq. �30�� can be nonzero. This is in accordance
with the experiments.8

We now focus on the interchain terms. These terms have
zero contributions at zero field, as all these terms involve the
a component of spins, which is zero at zero field. However,
the spins may flop to other planes upon applying a magnetic
field along the b axis. If we assume that the spins are flopped
to the ac plane, then these interchain terms immediately pro-
duce a nonzero Pa from Eq. �31�. We therefore conclude that
the interchain term does explain the ferroelectricity gener-
ated in nonzero magnetic field. The presence of interchain
coupling is supported by experimental evidence found in
Raman-scattering experiment.25

We have compared the known experimental data and the
predictions obtained by both the intrachain and the interchain
magnetoelectric couplings. We see that the theory must in-
clude at least two terms: Eq. �30� from intrachain couplings
and Eq. �31� from the interchain couplings, to account for the
zero-field and nonzero-field data, respectively. The other
terms may exist but do not contribute to the static ferroelec-
tricity, and their presence will not be considered in Sec. V
where we consider a minimal-coupling model.

It is useful for further calculation and understanding to
write down the magnetoelectric couplings in the continuum
real space rather than the k space. All the symmetry allowed
magnetoelectric couplings are given in terms of the Fourier
components of the spins. In transforming them into real
space to obtain a continuum theory for further study, it can
be shown that the real-space expression is not unique. The
reason is that in writing down any magnetoelectric coupling
term, taking the term iPc�M�1�b

� M�1�c,a−c.c.� �1�→ �2�� as an
example, the coefficient before this term can be an arbitrary
function of the modulation vector q. �It should be pointed out
that the value of the wave vector q here is not the experi-
mental �2��0.826 but its physically equivalent value
q= �0.826−1�2�=−0.174�2��, which is consistent with the
continuum limit we are considering.� The symmetry
alone cannot give us any property of such a function besides
that f�q� is odd under q→−q if there is a prefactor i in
front of the magnetoelectric coupling, and even if there
is no i. For the example considered above, we have f�q�
= f1q+ f2q3+ f3q5+¯. From now on we always keep the first
nonzero order of f�q�, provided that we want the simplest
form of the effective continuum theory. The important mag-
netoelectric terms in an effective theory should be low en-
ergy in nature. So the above magnetoelectric term can be
written as i�cf1qPc�M�1�b

� M�1�c,a−c.c.� �1�→ �2��, where �c
is a function of the parameters—temperature, lattice con-
stant, spin-orbit coupling constant, etc. Such an expression
can be easily shown to be equivalent to

�cPc�M�1�b�y��yM�1�c,a�y� − �yM�1�b
�y�M�1�c,a�y��

� �cPc��1� → �2�� , �33�

after a Fourier transform where �c is the intrachain magne-
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toelectric coupling. Now let us consider the term
Pa�M�1�b

� S�1�c,a+c.c.� �1�→ �2��. There, prefactor i is absent
so the lowest-order term we keep in f�q� is f0. After the
Fourier transform, the real-space expression is

�aPa�M�1�b�y�M�1�c,a�y� � �1� → �2�� , �34�

where �a is the intrachain magnetoelectric coupling. Like �c,
it is a constant depending on the known parameters men-
tioned earlier. Having considered Eqs. �27�–�30� as ex-
amples, we now focus on the interchain terms in real space
using the same method. We then have for Eqs. �31� and �32�

�aPa�M� �1� � �yM� �2� + M� �2� � �yM� �1��b, �35�

�cPc�M� �1� � M� �2��b, �36�

where �a and �c are the interchain couplings.
Physically, the magnetoelectric coupling must involve

more than one atom in real space. The two terms expressed
in Eq. �34� are therefore out of consideration. We observe
that the term represented by Eq. �36� is independent of the
spin structure along the chain but dependent only on the
relative phase between the two chains, which is not reason-
able. Therefore, the terms represented by Eqs. �33� and �35�
are the only possible magnetoelectric coupling terms in the
effective theory. These are the interactions which are consid-
ered in Sec. V.

Before we move on to Sec. V, let us comment on the
relation and the deviation between the proposed theory and
the existing phenomenological theory,18 which adopts

P� · ��M� ·��M� − ��� ·M� �M� � as the general form for the magne-
toelectric coupling. It can be verified that the intrachain cou-
pling term i�cf1qPc�M�1�b

� M�1�c−c.c.+ �1�→ �2�� is, up to a

factor, simply the first part of P� · ��M� ·��M� − ��� ·M� �M� �
that has Pc in it. This explains why one can still
understand the zero-field data using the previous theory.
However, our theory deviates from the existing one18 in all
the other magnetoelectric terms. For example, the term
iPa�M�1�b

� M�1�a−c.c.+ �1�→ �2��, which is a term in

P� · ��M� ·��M� − ��� ·M� �M� � and used in explaining the develop-
ment of Pa in a magnetic field, cannot be found in our set of
magnetoelectric couplings. In fact, one can check that this
term violates the symmetry invariance under the operation 2c
and cannot feature in any theory related to this compound.
This tells us that, even if the spins do flop to the ab plane,
one still cannot use the old theory to explain the ferroelec-
tricity flop from the c to the a axis.

Why does the existing phenomenological theory18 fail in
LiCu2O2? One of the postulates of the theory is that the
ferroelectricity is coupled to a single spin chain, or many
independently contributing spin chains. One can do a sym-
metry analysis to recover the magnetoelectric term

P� · ��M� ·��M� − ��� ·M� �M� �. The lattice symmetry group here is
the symmetry group of a single chain, obviously different
from the one for a real multiferroic. However, the application
of the theory is not limited to the systems consisting of only
independent chains. Mathematically, one can show that, in a
system that has at least one one-dimensional �1D� represen-

tation of the little group, this theory may be applied. In those
systems one can always define M�=�unit cellSi� and it is au-
tomatically a symmetry adapted variable. Physically, in do-
ing this one has considered the unit cell as one single spin,
hence ignoring the details of the lattice, and making the com-
plex lattice a simple lattice with only one spin per site. This
simplified system can always be viewed as a set of single
spin chains. Even if such a condition is met, Ref. 18 might
still not be the right theory but only an allowed theory. Nev-
ertheless, there are multiferroics where there are no 1D rep-
resentations for the little group. In such cases, M�

=�unit cellSi� is no longer a symmetry adapted variable and
therefore the complex lattice cannot be simplified. Here the
single chain theory always fails to meet the requirement of
symmetry invariance and therefore must be excluded. One
example of this is RMn2O5, which have one 2D representa-
tion. Another example is LiCu2O2 as demonstrated in this
paper. It also may be true that systems with an antiferromag-
netic alignment along a certain crystallographic direction do
not have 1D representations while those without such modu-
lation do have 1D representations and therefore may be ex-
plained using the conventional phenomenological theory.
However, due to the diversity and complexity of all multifer-
roic materials, we do not have proof to back such a
generalization.26

To end this discussion, we wish to clarify that there is a
distinction between “interchain magnetoelectric coupling”
and “interchain spin exchange.” The latter is necessary for
long-range magnetic order as in the three-dimensional �3D�
Heisenberg model. The former can be totally absent in mod-
els for materials such as TbMnO3 and MnWO4,5 where each
spin-spiral chain can contribute independently to the ferro-
electricity. In these cases a 1D chain that has a spiral mag-
netic structure is adequate enough to generate the ferroelec-
tricity. The Katsura-Nagaosa-Balatsky model27 for RMnO3
and Lorenz’s 1D anisotropic classical Heisenberg model for
MnWO4 are examples of this. For LiCu2O2 we propose an
interchain magnetoelectric coupling which is an interaction
term that involves more than one spin-spiral chain.

V. EFFECTIVE HAMILTONIAN

Based on the arguments of Sec. IV, we state the simple
effective Hamiltonian which can explain the basic phenom-
ena observed in the LiCu2O2 experiments.8 In particular we
provide an explanation for the polarization flip in the pres-
ence of an external magnetic field. The effective Hamiltonian
that we propose includes only two terms. One term involves
the intrachain coupling which is responsible for the electric
polarization along the c axis. The other term involves the
interchain coupling that is responsible for the electric polar-
ization along the a axis. The magnetoelectric coupling
Hamiltonian HME is given by

HME = �cPc�M� �1� � �yM� �1� + M� �2� � �yM� �2��a

+ �aPa�M� �1� � �yM� �2� + M� �2� � �yM� �1��b, �37�

where the symbols have the same meaning as before. Both
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these terms satisfy the underlying lattice and magnetic sym-
metry requirements.

The proposed effective Hamiltonian �Eq. �37�� explains
the basic physics of the LiCu2O2 system. First, in the ab-
sence of any external magnetic field according to the
neutron-scattering experiments,8,9 the spins lie on the bc

plane. We have for the ground-state spin configuration, M� �1�o

and M� �2�o, in the two chains

M� �1�o = S�0,cos�qy�,sin�qy�� , �38�

M� �2�o = S�0,cos�qy + ���,sin�qy + ���� , �39�

where �� is the phase difference between the spin configu-
rations of the two chains. Based on Eq. �37� this spin con-
figuration leads to an electric polarization along the c axis,

Pc 
 �M� �1� � �yM� �1� + M� �2� � �yM� �2��a = const. �40�

Second, in the presence of an applied magnetic field along
the b axis, the spin should flip to the ac plane when the field
is larger than a certain critical value. This spin-flop transition
is expected in a very general magnetic model with relatively
isotropic couplings and spiral magnetism. This is similar to
the spin-flop transition in the antiferromagnetic Heisenberg
model in the presence of a Zeeman magnetic field. Therefore
the expected ground-state spin configuration in the two
chains is

M� �1�o = S�cos�qy�,0,sin�qy�� , �41�

M� �2�o = S�cos�qy + ���,0,sin�qy + ���� . �42�

Based on Eq. �37�, this spin arrangement leads to an electric
polarization along the a axis �see Sec. VII for a discussion on
twinning and its consequences for our model� when the spin
structure in both the spin chains are in phase, that is, ��=0,

Pa 
 �M� �1� � �yM� �2� + M� �2� � �yM� �1��b = const. �43�

The theoretical model developed above suggests that the
polarization in the two crystallographic direction comes from
two different types of coupling. The polarization along the c
axis arises from the intrachain coupling while the polariza-
tion along the a axis stems from the interchain coupling.
Furthermore, in formulating this model we do not include
strong anisotropy in the spin model to explain the flop tran-
sition of the electric polarization in the presence of an ap-
plied external magnetic field.

VI. SPIN STRUCTURES AND ELECTRIC POLARIZATION

Since there is no general consensus on the zero-field
magnetic structure of the LiCu2O2 compound, we provide
here a discussion for the various experimentally proposed
magnetic structures.8–11 We explore the consequences of the
effective trilinear magnetoelectric coupling �see Sec. V� for
each spin arrangement—the Masuda structure,10 the
Park and Seki structure,8,9 and the Gippius structure.11 We

impose no constraints on the magnetoelectric couplings
except that the two components of magnetization that enter
the coupling should be different due to the fact that
ferroelectricity is generated in the presence of
noncollinear magnetic structure in this compound.
Using the proposed model we then calculate the static
ferroelectric polarization produced. The three magnetic
structures, when written in the real space are

Masuda, M� �i��y�=M�cos�qy+�i� , sin�qy+�i� ,0�; Park

and Seki, M� �i��y�=M�0,cos�qy+�i� , sin�qy+�i��;
and Gippius, M� �i��y�=M�sin�qy+�0�cos�qy+�0� , cos�qy
+�0� , sin�qy+�0�sin�qy+�0��, where we leave the relative
phase between the two spin chains to be arbitrary. We Fou-
rier transform the expressions and have for the Masuda struc-
ture, M�i�a�q�=1 /2 exp�i�i�, M�i�b�q�=1 / �2i�exp�i�i�; for
the Park and Seki structure, M�i�c�q�=1 /2 exp�i�i�,
M�i�b�q�=1 / �2i�exp�i�i�; and for the Gippius structure,
M�i�a�2q�=exp�i��0+�0�� / �4i�, M�i�a�0�=sin��−�� /2,
M�i�b�q�=exp�i�0� /2M�i�c�2q�=−exp�i��0+�0�� /4, M�i�c�0�
=cos��−�� /2. Inserting these Fourier components into the
expressions for magnetoelectric couplings �Eqs. �27�–�32��,
we calculate the space-averaged ferroelectricity in all three
directions. The results are reported in Table IV.

From the above results we conclude that the structure sug-
gested by Park et al.8 and Seki et al.9 is most likely to be the
real magnetic structure, as the polarization calculated using a
general magnetoelectric coupling produces the correct direc-
tion �along the c axis�. A similar calculation with the mag-
netic field applied along the b axis cannot reliably predict the
direction in which the ferroelectricity exists. This is due to
the effect of twinning and we discuss this issue in the next
section.

VII. CONSEQUENCES OF TWINNING

The experimental data on LiCu2O2 �Ref. 8� reveal that the
compound exhibits a unique behavior of generating an elec-
tric polarization parallel to the applied external magnetic-
field direction. In reality, one of the difficulties for the ex-
periments on this material is the twinning of the crystal �see
Fig. 2�, which renders the synthesis of a large single crystal
extremely intractable.28 Twinning is caused by the coinciden-
tal equality between the crystallographic a axis and the
doubled b axis, a
2b. With such twinning, it is difficult to

TABLE IV. Electric polarization predictions for the various ex-
perimentally proposed spin structures �Refs. 8–11� based on our
proposed effective trilinear magnetoelectric coupling, Eq. �37�. The
electric polarization is represented by �Pa , Pb , Pc� along the �a ,b ,c�
crystallographic direction.

Spin structures and corresponding polarization

Polarization Masuda Park and Seki Gippius

Pa 0 0 �0

Pb 0 0 0

Pc 0 �0 0
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identify unambiguously the orientation of some important
order parameters in the neutron-scattering experiments. For
example, the ac-plane spiral cannot be distinguished from
the bc-plane spiral. Furthermore, if there is a nonzero ferro-
electric order in the ab plane, we cannot know whether it is
along the a axis or along the b axis. To clarify the situation,
in this section, we discuss the effect of twinning and its
consequences on the predictions from our model.

To begin with, one has to realize that there are two pos-
sible orientations in a sample. We call these type-I and
type-II patches. We choose the horizontal axis as the experi-
mental a axis, denoted by ae, which is either along the real a
axis �for type-I patches� or along the real b axis �for type-II
patches�. We define the direction perpendicular to ae as the
experimental b axis, be. Notice that twinning happens only in
the ab plane so the c axis can be determined unambiguously.
We still define the experimental c axis, ce, but keep in mind
that it is the same as the crystallographic c axis. The static
properties at zero magnetic field are not affected by the twin-
ning as both kinds of patches contribute to the ce axis polar-
ization.

The situation becomes subtle if a magnetic field is applied
along the be axis. We discuss its effect on both the type-I and
type-II patches separately. For type-I patches, the crystallo-
graphic axes are aligned with the experimental axes; there-
fore the magnetic field is applied along b axis. According to
the analysis above, there is a spin-flop transition at a certain
field, which was experimentally determined as Hc�3 T �see
Fig. 3 of Ref. 8�. At the transition, the polarization of these
patches will also flop to a axis, which qualitatively explains
the �50% drop in Pc at H�4 T, as half of the patches are
type-I patches. For the type-II patches, a magnetic field along
be is actually applied to its a axis. For a magnetic spiral on
the bc plane, which was the ground state of the compound in
zero field, a magnetic field along the a axis can only tilt the
spiral toward its direction and change the spiral from a co-
planar spiral to a conical spiral. There is no spin-flop transi-
tion in type-II patches, and the ferroelectric moment is al-
ways along the c axis. However, the magnitude of it could be
tuned by the magnetic field to become smaller. A naive pic-

ture to see this is that, with the magnetic field becoming
larger and larger, the spiral is more and more tilted so that
the bc-plane components of the spins become smaller, thus
making the ferroelectricity also decrease �using Eq. �35��.
This explains the experimental fact that with the field higher
than 4 T, there is still a remnant c-axis polarization, which
survives up to 9 T and is only as small as 1/4 of the zero-field
polarization. Combining the consideration of both kinds of
patches, we claim that the sudden drop of Pc at �4 T and
the nonzero remnant Pc are both effects of crystal twinning.
For an idealistic single crystal, we predict that one sees a
complete polarization flop from the c axis to the a axis. A
good example of a complete flop is TbMnO3 at very low
temperature at H
5 T.

VIII. ELECTROMAGNON SELECTION RULES

In this section, using the phenomenological Hamiltonian
we predict a selection rule to be obeyed by the hybrid exci-
tations of phonon and magnon termed as electromagnons.29

It is hoped that these electromagnon excitations can be ex-
perimentally detected in future experiments.

The selection rule can be stated as follows: electromag-
netic waves that are polarized perpendicular to the bulk elec-
tric polarization can be absorbed. To be more specific in zero
magnetic field only those electromagnetic waves that are po-
larized along the crystallographic a axis can couple to the
magnons. However, with an applied magnetic field along the
b axis, only those waves polarized in the crystallographic c
axis can couple to the magnons.

The selection rules can be obtained in the following man-
ner. We first consider the case with the external magnetic
field absent. The dynamics of the system can be derived by
assuming a small deviation in the ground-state properties

P� = P� o + u� , �44�

M� �1� = M� �1�o + �M� �1�, �45�

M� �2� = M� �2�o + �M� �2�, �46�

where P� o, M� �1�o, and M� �2�o are the ground-state values, and

the small deviations are indicated by u� , �M� �1�, and �M� �2�.
Energy minimization requires that the first-order terms van-
ish in the ground state. We therefore study the second-order
terms in the perturbation expansion to see how the dynamical
degrees of freedom are coupled. Also the spin being a length-

preserving vector, we know that �M� �i��M� �i�o. Defining n�1
= �0,cos�qy� , sin�qy�� , n�2= �0,−sin�qy� , cos�qy��, we have

�M� 1=m1
�1�n�2+m2

�1�a� �where a� is the unit vector along the a
axis�. We now consider the second-order coupling that in-

volves u�c and �M� �1� derived from Eq. �37�,

uc��M� �1� � �yM� �1�o − �y�M� �1� � M� �1�o�a

= S2uc�q�m1
�1�n�2 + m2

�1�a�� � n�2

− ��ym1
�1�n�2 − qm1

�1�n�1 + �ya�� � n�1a

��

��

���� �

��
��

��

�

�

FIG. 2. A typical zoom-in picture of the twinned crystal struc-
ture is shown. The long direction of the patch has length a and the
short direction has length b. We choose the horizontal axis as the
experimental a axis, denoted by ae, which is either along the real a
axis �for type-I patches� or along the real b axis �for type-II
patches�. We define the direction perpendicular to ae as the experi-
mental b axis, be.
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= S2�ym1uc. �47�

In momentum space the above expression can be written as

S2uc�− k���− iky�m1
�1��k�� . �48�

From this we infer that the zero mode phonon uc�k� =0� does
not couple to the magnons. Therefore, if we compute the
optical conductivity Im Guu�k� =0,�� in the lowest order �sec-
ond order�, the coupling does not contribute. This shows that
when Pc�0 the phonons along the same direction do not
couple to the magnons. These phonons make no contribution
to the electromagnons that may be observed in an optical
conductivity measurement. However, the higher-order terms
are still coupled. A similar type of result can be obtained

with the terms involving �M� �2�. This verifies the first part of
our selection rule by showing that, when an electric polar-
ization is present along the c axis, only the phonons polar-
ized along the a axis can couple to the magnons to generate
the electromagnons.

The coupling between the phonons polarized along the a
axis and the magnons can be derived as follows. For ua, from
Eq. �37� we have

ua��M� �1� � �yM� �2�o − M� �2�o � �y�M� �1��b

= S2ua�− q cos�qy�m2
�1� + sin�qy��ym2

�1�� . �49�

Therefore the total effective Hamiltonian Hd
eff describing the

dynamics of the phonon and the magnon can be written as

Hd
eff = �

p
�h�0b†�p�b�p� +

�p2

2 �
i

m2
†�i��p�m2

�i��p�

+
�aS2

2
�b†�p + q� + b†�p − q���− qm+�p� − pm+�p��	 ,

�50�

where h is the Planck constant, ��J �the effective magnetic
coupling strength in the magnetic chain�, q is the incommen-
surate wave vector, �0 is the bare phonon energy, bp is pho-
non annihilation operator, and m+=�im2

�i�.
A qualitative understanding of the electromagnon fre-

quency for the LiCu2O2 compound can be obtained by per-
forming a spin-wave analysis. The analysis is done for the
case when the optical phonon frequency is much larger than
the magnon frequency of interest. This implies that if we
measure the ac conductivity versus frequency we will ob-
serve a peak at the frequency of the magnon. We should note
that two points justify the neglect of the dynamic lattice de-
grees of freedom, the displacement field u, for the LiCu2O2
system. First, the optical phonon frequency is much higher
than the magnon frequency. Second, the magnetoelectric
coupling is very small compared to the other multiferroics,
for example, in the 113 systems. This makes it unnecessary
to explicitly include the dynamic degrees of freedom in the
dielectric displacement.27

We now perform a standard spin-wave analysis27 about
the ground state to find the frequency at the desired wave

vector, k� =Q� . The model Hamiltonian for LiCu2O2 proposed
in Ref. 10 is

H = �
i,j

�J1S� i,j · S� i+1,j + J2S� i,j · S� i+2,j + J4S� i,j · S� i+4,j

+ J�S� i,j · S� i,j+1� + DS�
2 . �51�

Here we have included an easy-plane anisotropy which gen-
erally exists due to the anisotropy of the lattice. Moreover
this term favors the easy plane of spin alignment in the
ground state, say, the bc plane in zero field, but the ac plane
in a strong magnetic field along the b axis. To solve for the
spin-wave dispersion we employ the rotating frame of refer-
ence coordinate system, writing the spin vector at any site
relative to the other rotating one as

S� i,j = Si,j
� e�x + �Si,j

� cos�Q� · R� i,j� + Si,j
� sin�Q� · R� i,j��e�y

+ �− Si,j
� sin�Q� · R� i,j� + Si,j

� cos�Q� · R� i,j��e�z. �52�

In the above equation the magnetic propagation vector is

given by Q� = � �
a , 2��

b ,0�, where �=−0.174 is the spiral modu-
lation along the chain. Inserting the above form for the spin
vector, we recast the Hamiltonian in terms of S�, S�, and S�

components. We then compute the effective magnetic-field

components using the formula H� eff=−�� S� i,j
H. We then solve

for the equation of motion for the spin components using the
effective magnetic-field equations and spin components in
terms of the Holstein-Primakoff formalism listed below:

Sm,n
� =�S

2
�am,n + am,n

� � , �53�

Sm,n
� = − i�S

2
�am,n − am,n

� � . �54�

The equations of motion are given by

�Ṡm,n
� = Sm,n

� Heff
� − Sm,n

� Heff
� , �55�

�Ṡm,n
� = Sm,n

� Heff
� − Sm,n

� Heff
� , �56�

where in the above equation we set Si,j
� =S since it is the

direction in which the spin average points. Using the equa-
tions for the effective magnetic field, the spin components,
and finally Fourier transforming, we obtain the dispersion as

−
�

2S
Ṡ��q�� = S��q���J�Q� � −

J�Q� + q�� + J�Q� − q��
2

� , �57�

−
�

2S
Ṡ��q�� = S��q���J�q�� − J�Q� � + D� , �58�

where we define J�q��=J1 cos�qbb�+J2 cos�2qbb�
+J4 cos�4qbb�+J� cos�qaa�, where qa and qb refer to the a
and b components of the wave vector. From the equations

above it is obvious that at q� =Q� we have

���Q� � = 2S�� J�2Q� � + J�0�
2

− J�Q� ��D . �59�
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The above electromagnon dispersion indicates that the
frequency is proportional to the square root of the easy-plane
anisotropy D. In zero field, the easy plane is the bc plane.
With an applied magnetic field along the a axis, this field
will effectively increase the anisotropy in the form of
D�D0+Ha

2 /2�, where � is the spin stiffness. This should
lead to a hardening of the electromagnon frequency �a right
shift of the peak in the ac-conductivity measurement�. If the
magnetic field is applied along the b axis, it effectively di-
minishes the easy-plane anisotropy in the form of
D�D0−Hb

2 /2�. Therefore, one must observe the softening
along with the increase in the magnetic field and at the point
where the frequency becomes zero, the magnon mode be-
comes unstable, and the spin-flop transition happens

The above mechanism explains the observed phase tran-
sition at a certain magnetic field along the b axis as the
destabilization of one electromagnon mode. In the high-field
phase, the spins are lying in the ac plane, making the ac
plane an easy plane described by an anisotropy term. In this
phase, increasing the field along the b axis will increase the
easy-plane anisotropy, whereas applying a field along the a
axis will decrease the anisotropy. Therefore, we predict that
the electromagnon hardens with an increase in magnetic field
along the b axis, and softens with an increase in magnetic
field along the a axis. This is opposite to what we should see
in the low-field phase.

IX. SUMMARY AND CONCLUSIONS

In this paper we analyze the possible types of magneto-
electric coupling in the recently studied multiferroic com-
pound LiCu2O2. Based on a group theoretical analysis we
construct a multi-order-parameter phenomenological model

for the double-chain zigzag structure. We show that an inter-
chain magnetoelectric coupling belonging to the same unit
cell explains the experimental results of Park et al.8 This
constructed model for the multiferroic LiCu2O2 compound
can explain the polarization flip from the c to the a axis with
the applied magnetic field along the b axis. The model can
relate the flop of the spin-spiral plane with the direction of
the electric polarization. We conclude that the zero-field
structure observed by Seki et al.9 is the correct one. We also
provide a discussion on twinning and elucidate how it leads
to difficulties in unambiguously predicting the direction of
the ferroelectric polarization. The model makes specific se-
lection rule predictions about the hybrid phonon and magnon
excitations called electromagnons. We predict that the elec-
tromagnon peaks measured in an ac-conductivity measure-
ment are field dependent and behave in opposite ways in the
P �a and P �c phases. However, since the value of the polar-
ization in this material is rather weak, it will require a very
high-resolution spectroscopy measurement to observe the
electromagnons in the actual system.

The model we propose in this paper could be oversimpli-
fied. However, at present only a limited set of experimental
results are available for this compound. We believe this phe-
nomenological model is a step toward understanding the
magnetoelectric coupling effects observed in the LiCu2O2
compound. It is open to future experiments to determine the
relevance of the other magnetoelectric coupling terms which
we derived in this paper based on a group theoretical calcu-
lation.
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